Step of Proof: all_functionality_wrt_implies
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
all
functionality
wrt
implies
:
S
,
T
:Type,
P
,
Q
:(
S
). (
S
=
T
)
(
z
:
S
. {
P
(
z
)
Q
(
z
)})
{(
x
:
S
.
P
(
x
))
(
y
:
T
.
Q
(
y
))}
latex
by ((((Unfold `guard` 0)
CollapseTHEN (UnivCD))
)
CollapseTHENA ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
S
: Type
C1:
2.
T
: Type
C1:
3.
P
:
S
C1:
4.
Q
:
S
C1:
5.
S
=
T
C1:
6.
z
:
S
.
P
(
z
)
Q
(
z
)
C1:
7.
x
:
S
.
P
(
x
)
C1:
8.
y
:
T
C1:
Q
(
y
)
C
.
Definitions
t
T
,
x
(
s
)
,
{
T
}
,
P
Q
,
,
x
:
A
.
B
(
x
)
origin